Publications

(see Google Scholar for a more updated list)

"Machine Learning Models for Improved Tracking from Range-Doppler Map Images" E. Hou, R. Greenwood, P. Kumar, 27th International Conference on Information Fusion (2024). arXiv IEEE Xplore

"Decoding Layer Saliency in Language Transformers" E. Hou, G. Castanon, International Conference on Machine Learning (2023). arXiv ICML Slides / Poster

"Hierarchical Entity Alignment for Attribute-Rich Event-Driven Graphs" E. Hou, J. Brown, J. Fisher, arXiv

"Penalized Ensemble Kalman Filters for High Dimensional Non-linear Systems" E. Hou, E. Lawrence, A. O. Hero, PloS one 16 (2021). arXiv PubMed Central

"Anomaly Detection in Partially Observed Traffic Networks" E. Hou, Y. Yilmaz, A. O. Hero, IEEE Transactions on Signal Processing (2019). arXiv IEEE Xplore

"Sequential Maximum Margin Classifiers for Partially Labeled Data" E. Hou, A. O. Hero, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. arXiv IEEE Xplore

"Latent Laplacian Maximum Entropy Discrimination for Detection of High-Utility Anomalies" E. Hou, K. Sricharan, A. O. Hero, IEEE Transactions on Information Forensics and Security (2018). arXiv IEEE Xplore Code

"Efficient Distributed Estimation of Inverse Covariance Matrices" J. Arroyo*, E. Hou*, 2016 IEEE Statistical Signal Processing Workshop (SSP) (*equal contribution). arXiv IEEE Xplore

"Anomaly Detection and Sequential Filtering with Partial Observations" E. Hou, University of Michigan Deep Blue (2019). Deep Blue

"Online Diversion Detection in Nuclear Fuel Cycles via Multimodal Observations" Y. Yilmaz, E. Hou, A. O. Hero, ANS Advances in Nuclear Nonproliferation Technology and Policy Conference (2016). arXiv

"Diversion Detection in Partially Observed Nuclear Fuel Cycle Networks" E. Hou, Y. Yilmaz, A. O. Hero, ANS Advances in Nuclear Nonproliferation Technology and Policy Conference (2016). arXiv

"Social Media as an Alternative to Surveys of Opinions About the Economy" F. Conrad, J. Gagnon-Bartsch, R. Ferg, M. Schober, J. Pasek, E. Hou, Social Science Computer Review (2019). SAGE

"A “Collective-vs-Self” Hypothesis for When Twitter and Survey Data Tell the Same Story" F. Conrad, M. Schober, J. Pasek, L. Guggenheim, C. Lampe, E. E. Hou, Annual Conference of the American Association for Public Opinion Research (2015).

Professional Activities

Conference Reviewer: NeurIPS, ICML, ICLR (often outstanding / highlighted / etc.)

Journal Reviewer: TMLR, IEEE TSP, IEEE TIFS, IEEE TNNLS, IEEE TNSM, IEEE IoT, PloS One, SIAM Statistical Analysis & Data Mining, IET Intelligent Transport Systems